Acta Informatica 40, 119-157 (2003) m@

Digital Object Identifier (DOI) 10.1007/s00236-003-0118-7 ﬁ@
Infor,atica

Sticky-free and overhang-free DNA languages

Lila Kari', Stavros Konstantinidis?, Elena Losseva', Geoff Wozniak'

. Deptartment of Computer Science, University of Western Ontario, London, Ontario,
N6A 5B7 CANADA (e-mail: {lila;elena;wozniak } @csd.uwo.ca)

2 Deptartment of Mathematics and Computing Science, Saint Mary’s University, Halifax,
Nova Scotia, B3H 3C3 CANADA (e-mail: s.konstantinidis @stmarys.ca)

Received: 6 February 2003
Published online: 2 September 2003 — (©) Springer-Verlag 2003

Abstract. An essential step of any DNA computation is encoding the in-
put data on single or double DNA strands. Due to the biochemical proper-
ties of DNA, complementary single strands can bind to one another form-
ing double-stranded DNA. Consequently, data-encoding DNA strands can
sometimes interact in undesirable ways when used in computations. It is
crucial thus to analyze properties that guard against such phenomena and
study sets of sequences that ensure that no unwanted bindings occur dur-
ing any computation. This paper formalizes and investigates properties of
DNA languages that guarantee their robusteness during computations. Af-
ter defining and investigating several types of DNA languages possessing
good encoding properties, such as sticky-free and overhang-free languages,
we give algorithms for deciding whether regular DNA languages are in-
variant under bio-operations. We also give a method for constructing DNA
languages that, in addition to being invariant and sticky-free, possess error-
detecting properties. Finally, we present the results of running tests that
check whether several known gene languages (the set of genes of a given
organism) as well as the input DNA languages used in Adleman’s DNA
computing experiment, have the defined properties.

Key words: Theoretical DNA computing, DNA encodings, codes, formal
languages.

Research partially supported by Grants R2824A01 and R220259 of the Natural Sciences and
Engineering Research Council of Canada.

120 L. Kari et al.

1 Introduction

Deoxyribonucleic acid (DNA, Fig.1) is the molecule found in all cellular
organisms that holds their genetic information. It is composed primarily of
nucleotides (Figure 1 (b)) with a sugar-phosphate backbone (Figure 1 (a)).
The nucleotides attach to the backbone to form a structure that resembles a
clothesline if one were to use the backbone as the line and the nucleotides as
the clothes. This is known as single-stranded DNA. A single strand of DNA
has an orientation and its two ends are physically different. By convention,
one end of the backbone is called the 5" end and the other one is called the
3’ end.

Single-stranded DNA molecules can bind to each other to form double-
stranded DNA molecules. This happens due to the fact that the nucleotides
are pairwise Watson-Crick complementary: A is complementary to 7" and
C to G. When two complementary single DNA strands with opposite orien-
tation meet under favourable conditions, they bind to each other to form a
double-stranded DNA molecule in a process called base-pairing, hybridiza-
tion or annealing. The reverse process, of a double-stranded DNA molecule
breaking apart into its single-stranded components is called melting or de-
naturation.

(a) ¥
5

Al [c| |G |T|/|lc| |S]\|Aa| |c
(©) [

T
Lol Tl [l A
<T(':‘l I(':‘l T| |G T| |G

3’

A

5

(b) (@
(e)

Fig. 1. A representation of a segment of a double-stranded DNA molecule. It is composed
of a sugar-phosphate backbone (a) with a 5° — 3’ orientation, designated by the arrows,
and a collection of nucleotides (b). The nucleotides form bindings (c) based on the Watson-
Crick complementarity, such as those in (d). The two single-strands of DNA bind in an
anti-parallel fashion, that is, when lined up, one strand is oriented 5 — 3’ and the other is
oriented 3’ — 5’. Non-overlapping sequences of three nucleotides (e) define codons, which
eventually define the amino acid sequences of proteins

DNA computing is based on the fact that information (numbers, let-
ters, special characters) can be encoded over the four-letter alphabet A =
{A,C,G, T} and therefore represented physically by DNA strands. More-
over, molecular biology techniques can be used to manipulate those strands

Sticky-free and overhang-free DNA languages 121

and thus perform arithmetic and logic operations. The techniques that have so
far been used for computations, called in the sequel bio-operations [17], in-
clude synthesis of desired strands, hybridization, denaturation, separation of
strands by length, extraction from a heterogeneous solution of those strands
that contain a given pattern as a subsequence, cut and paste DNA strands
at desired locations, insert and delete DNA strands into other strands, make
copies of DNA strands, detect and read out the sequence of letters composing
a DNA strand, etc.

After the initial human intervention, consisting for example of mixing
the appropriate components of a solution, most bio-operations consist ei-
ther of DNA strands self-assembling, or of active molecules (like enzymes)
acting upon DNA strands. A fundamental difference between an electronic
computer and a DNA based-computer is that in the former data interaction
is fully controlled by the programmer: one bit from a memory location will
not affect another bit at another location, unless explicitely instructed to do
so. In contrast, in a test-tube DNA-computer, data-encoding DNA strands
can affect each other in undesired ways. Take for example the bio-operation
hybridization based on Watson-Crick complementarity. Adleman’s DNA
algorithm, [1], for finding a Directed Hamiltonian Path in a given graph
consisted of encoding the nodes and edges on single DNA strands in such
a way that legal paths through the graph were formed by self-assembly:
5" — 3/ nodes were brought together by 3" — 5’ edges encoded especially
to bind both the incoming and outgoing nodes. As seen in Adleman’s ex-
periment, hybridization is fundamental to DNA computing. However, if the
input data is not carefully encoded, some data-encoding DNA single strands
can bind to others rendering them useless for subsequent computation. This
points out to yet another difference between DNA computing and electronic
computing. In electronic computing an operand is not “consumed” by an
operation, i.e. performing the addition 1 + 2 = 3 will not decrease the num-
ber of “1”’s available for other additions. However, in DNA computing, a
bio-operation usually consumes both operands. This means that if one of
the operands is involved in an illegal binding, it may be unavailable for the
desired computation and thus affect the correctness of the result.

In most proposed DNA-based algorithms, the initial DNA solution en-
coding the input to the problem will contain some DNA strands which rep-
resent single codewords, and some which represent strings of catenated
codewords. Several attempts have been made to address the issue of “good
encodings” by trying to find sets of codewords which are unlikely to form
undesired bonds with each other by hybridization [5], [9], [10]. For example
genetic and evolutionary algorithms have been developed which select for
sets of DNA sequences that are less likely to form undesirable bonds [4],
[6]. [7] has developed a program to create DNA sequences to meet logical

122 L. Kari et al.

and physical parameters such as uniqueness, melting temperatures and G/C
ratio as required by the user. [8] has addressed the issue of finding an optimal
word design for DNA computing on surfaces. [12] has designed a software
for constraint-based nucleotide selection. [11] has investigated encodings
for DNA computing in virtual test tubes. [22] used combinatorial methods
to calculate bounds on the size of a set of uniform code words (as a function
of codeword length) which are less likely to mis-hybridize.

This paper continues the approach in [18], [14] by formalizing and in-
vestigating properties of languages that guarantee that no unwanted partial
bindings will occur between the words of the language. The paper is orga-
nized as follows. Section 2 contains basic definitions, notation and examples
of the notions used or defined in this paper, such as sticky-free DNA lan-
guages or overhang-free DNA languages. Section 3 investigates properties
of such languages, for example, what are necessary and sufficient conditions
for the catenation of two languages to have one of the desired properties.
Section 4 gives algorithms for deciding whether a given regular language
is invariant under bio-operations. By applying these results to the compu-
tation language of a DNA-based system (the set of all possible words that
can be obtained during any bio-computation) we can decide whether “good”
encoding properties of the initial input language are preserved during a bio-
computation. Section 5 gives a method for constructing languages that, in
addition to being invariant, nonoverlapping and sticky-free, possess error-
detecting capabilities. Finally, Section 6 presents the results of running tests
checking whether several known gene languages (the set of genes of a given
organism), as well as the input DNA language used in Adleman’s first DNA
computing experiment, have the properties we have defined.

2 Definitions and Examples

For a finite set S, we denote by |S| the cardinality of .S, that is, the number
of elements in S. The set of non-negative integers is denoted by N. Let
X* be the free monoid generated by the finite alphabet X under the cate-
nation operation, where 1 denotes the empty word. X equals X* \ {1}.
A word w over X is a string w = ajaz...a, where a; € X. The length
of the word w is denoted by |w| and is the number of its letters, including
repetitions, |w| = n. The length of the empty word is zero. A language L
is a subset of X*. The catenation of two languages L1, Lo C X* is de-
fined as L1Ls = {uwv| u € Ly,v € Ly}. A mapping o : X* — X*
is called a morphism (anti-morphism) of X* if a(uwv) = a(u)a(v) (re-
spectively a(uv) = a(v)a(u)) for all u,v € X*. A bijective morphism
(anti-morphism) is called an isomorphism (anti-isomorphism) of X*. Note

Sticky-free and overhang-free DNA languages 123

that both a morphism and an anti-morphism of X* are completely defined
if we define their values on the letters of X.

An involution § : S — S of S is a mapping such that 62 is equal to
the identity mapping, i.e., 0(0(z)) = x for all x € S. It follows then that
an involution 6 is bijective and § = 6~!. The identity mapping is a trivial
example of an involution. In general, if f : X — X is an involution, then
X can be partitioned into X = AU A’ U B where |A| = | A’| and, for every
a € Awehave f(a) = d, f(d') = a,d € A, while f(b) = b for all
be B.If A= A" = () then f is the identity on X, whileif B = () fisa
sort of complement function on X which maps every element of A into an
element of A’ and vice versa.

An involution of X can be extended to either a morphism or an anti-
morphism of X*. For example, if the identity of X is extended to a morphism
of X*, we obtain the identity involution of X*. However, if we extend the
identity of X to an anti-morphism of X * we obtain instead the mirror-image
involution of X™* that maps each word w into v where

U =aias...a, V=ag...aa1,a; € X,1 <1i<k.

If A* is the free monoid generated by the DNA-alphabet A then the
mapping 7 : A — Adefinedby 7(A) =T,7(T) = A, 7(C) = G,7(G) =
C can be extended in the usual way to an anti-morphism of A* that is
also an involution of A*. This involution formalizes the notion of Watson-
Crick complement of a DNA sequence and will therefore be called the DNA
involution, [18]. By convention, a word w = ajas . .. a, in A* will signify
the DNA single strand 5" — aqas . ..a, — 3.

We conclude the list of definitions needed with some coding theory no-
tions. A code K is a subset of X satisfying the property that, for every
word w in K, there is a unique sequence (v1,v2,...,v,) of words in K
such that w = vivs - - - v,. An infix code, K, has the property that no word
of K is properly contained in another word of K, that is, K N (XK X* U
X*KX™T) = (). A comma-free code K is a language with the property
K?N XTKX* = (). Every comma-free code is an infix code.

Let us return now to the DNA computation set-up. In a DNA algorithm
the input data consists of a set of “codewords” represented by DNA strands.
In our terminology, this is a language over A™. We are interested in defining
languages in such a way that no two codewords can bind to each other. [18],
[14] have defined and analyzed several types of unwanted hybridizations.
For example, a language L C A" where no codeword is the exact Watson-
Crick complement of another codeword is called 7-nonoverlapping. A lan-
guage where a codeword has the property that its Watson-Crick complement
never is a subword of (and thus never binds to a segment of) another one is
called DNA compliant. A language where the Watson-Crick complement of

124 L. Kari et al.

a codeword never is a subword of the catenation of two other codewords is
called 7-free. In [18], [14] properties of languages with “good” coding fea-
tures such as 7-nonoverlapping, DNA compliant and 7-free, were defined
and investigated.

Note that until now we eliminated the cases where one word was com-
pletely complementary to a segment of another, or to a segment of the cate-
nation of two others. However, the biological reality points to other possible
undesired hybridizations: two strands can stick to each other even when both
of them have only segments of themselves that are fully complementary. For
example if two codewords have enough of an overlap, they will bind pro-
ducing a strand that is partially double-stranded and with single-stranded
overhangs (“sticky ends”) on the 5" end or the 3’ end (see Fig.2, third row,
Ist, 3rd and 4th box). This paper continues the study in [18], [14] by ad-
dressing types of unwanted hybridizations that involve such partial bindings
of codewords.

A summary of all the desirable properties of languages is given below,
where 0 is an arbitrary morphic or anti-morphic involution of X™* and L C
X ™. In the particular case where 6 is the DNA involution and X = A,
they depict the good encoding properties that languages consisting of DNA
strands should have if they are to be used for computations. Definitions
(A)-(E) of #-nonoverlapping and §-compliant languages were given in [18];
definition (F) of a O-free language was given in [14]. Definitions (G)-(J)
of #-sticky-free and f-overhang-free languages are new notions introduced
here.

(A) O-nonoverlapping: L N (L) = 0.

(B) 0-compliant: Vw € L, x,y € X*, w,z20(w)y € L = xy = 1.

(C) O-p-compliant: Vw € L, y € X*, w,0(w)y € L=y = 1.

(D) #-s-compliant: Vw € L, y € X*, w,yf(w) € L =y = 1.

(E) strictly 8-compliant:Vw € L, x,y € X*, w,z0(w)y € L = zy =1
and w # O(w).

(F) O-free: L2 N XTO(L)X+ = 0.

(G) O-sticky-free: Vw € X+, z,y € X*, wz,yf(w) € L = xy = 1.

(H) 0-3'-overhang-free: Vw € X', x,y € X*, wz,0(w)y € L = 2y =
1.

(I) 0-5'-overhang-free: Vw € X, x,y € X*, zw,y0(w) € L = 2y =
1.

(J) 6-overhang-free: both #-3'-overhang-free and #-5'-overhang-free.

For convenience, we agree to say that a language L containing the empty
word has one of the above properties if L \ {1} has that property.

Some of the situations these definitions are meant to depict are graphi-
cally presented in Figure 2: Each box in the figure represents the situation
forbidden in a class of languages having a certain property. The arrows

Sticky-free and overhang-free DNA languages 125

signify proper inclusion. For example, if a DNA language is #-3’-overhang-
free then it is also #-p-compliant. The names of the corresponding language
properties are given in brackets. For example, a §-p-compliant language is
a language where no two words can bind to form a structure like that in
the bottom left box of Figure 2. 6-compliance, 8-p-compliance and 6#-s-
compliance (p stands for prefix and s stands for suffix) have been defined
and studied in [18], [14], while 6-sticky-freeness and #-overhang-freeness,
0-3'-overhang-freeness, 0-5'-overhang-freeness are investigated in this pa-
per. The properties depicted by the top three boxes are the topic of future
study.

Jm

- N

S o

« mm

(6 -3 - overhang-free)

it

(0 - compliant)

w

(0 -sticky-free)

e

(6 -5 - overhang-free)

S

\W

/

T

(6 - p - compliant)

(6 -s-compliant)

Fig. 2. Language hierarchy

To further clarify the notions, we give in the following examples of
languages that have or do not have the defined properties.

Example 1. If we consider X = {a, b} and f an anti-morphic involution of
X* defined by f(a) = b, f(b) = a, then the language L = {a"0"| n > 1}
is not f-compliant. Indeed, for any k& > 1 f(a*b*) = f(bF)f(a*) = a*b*
which is a subword of infinitely many words in L. The language L is not f-
nonoverlapping as L N f(L) = L # 0.

However, L is f-p-compliantas v, f(v)x € Limplyv = a'b’,a’b’x € L
which implies = 1. A similar argument shows that L is f-s-compliant.

If instead of the involution f we consider the function g(a) = b, g(b) = a
extended to a morphic involution, then L is g-compliant. Indeed, any word
w = a"b" € L cannot have as a subword a word of the type g(u) = b*a*,
where u = a*b* € L. L is also g-nonoverlapping as L N g(L) = (.

126 L. Kari et al.

Observe that, for an involution 6, if a language is #-compliant then it
is both #-p-compliant and 8-s-compliant but the reverse does not hold as
shown by the previous example.

Note that the notions of #-compliant, §-p-compliant and 6-s-compliant
language become, in the particular case of # being the identity function on
X, extended to a morphic involution, the well-known notions of infix code,
prefix code and respectively suffix code.

Example 2. 1f X = {a, b} and g is the morphic involution g(a) = b, g(b) =
a, the language L = {a™b"| n > 1} is not g-free. Indeed, we can find
u = a'b’, v = a’b’ and w = a*b* with k < min{i, j} such that

uv = a'bla’t = a'b R aF eI TR = 2g(w)y,

where z = a’b**, y = o/ ¥’ and therefore zy # 1.

On the other hand, for Y = {a,b,c} and h extended to a morphic
involution from h(a) = ¢, h(c) = a, h(b) = b, we have that the language
L' = {a™"c"| n > 1} is h-free. Indeed, words uv € L'? are of the
form wv = a'b'calbic’, i,7 > 0, while, for any w = akvkdk e I,
h(w) = c¢*b*a* and therefore h(w) cannot be a subword of any uv € L.

Note that in the particular case when 6 is the identity on an alphabet X
extended to a morphic involution of X*, the notion of a 6-free language
becomes the well-known notion of a comma-free code.

Example 3. If X = {a, b} and the function e(a) = a, e(b) = b is extended
to an anti-morphic involution then the language L = {a™b"| n > 0} is
e-sticky-free. This follows as any word wzx € L is of the form a"b", n > 0
and therefore w = a'b/, i > 0, j > 0. However then we have e(w) = b/ a’
which cannot be a suffix of any word in L.

On the other hand, if Y, L’ and h are like in Example 2, then L’ is not
h-sticky-free. We can have, for example, u = v = a'b’c’, i > 0 in L' and
therefore v = wz, v = yh(w) for z = b'c’, y = a'd’, w = a’.

Example 4. f Y = {a,b,c}, L' = {a"b"c"| n > 0}, and ¢ is defined
as t(a) = a, t(b) = ¢, t(c) = b and is extended to a morphic involution,
then L' is not ¢-3’-overhang-free. Indeed, we can find wz = a’b'c’, i > 0,
w = a’, x = a"Ibc’ such that t(w)y = a/b/¢/ € L'. The language
L' is t-5’-overhang-free as zw € L' means xw = a'b’c’ and therefore
t(w) = ubk, k > 0. However, no word in L’ ends in b and therefore ¢(w)
cannot be the suffix of any word in L'. As it is ¢-5’-overhang-free but not
t-3'-overhang-free, it follows that L’ is not t-overhang-free.

An example of a language which is not g-5’-overhang-free where g is
defined as in Example 2 is L” = {w € {a,b}*| |w|, = |w]|p}. We can find
indeed words = y = b3a3, w = ba such that both zw and yg(w) are in
L".

Sticky-free and overhang-free DNA languages 127

3 Sticky-free and overhang-free languages

We have defined several properties that are desirable for DNA languages to
have. The practical implication is that one can write algorithms (see Section
6) that can check whether or not a given DNA language has these properties.
Ideally a minimal number of such checks would be optimal, therefore we are
interested in finding interconnections between these properties which would
reduce the number of checks needed. For example, the result that a language
which is 3’-overhang-free is p-compliant has the practical implication that
we only need to check the property of 3’-overhang-freeness. The first part
of this section investigates such relations between some of the properties,
complementing thus the results obtained in [14]. The second part of the
section addresses the problem of catenation of DNA languages. This is a
practical problem that might arise when combining two computations, which
means taking the union of, but also possibly catenating, their input DNA
languages. The question we address is under which conditions the catenation
of two sticky-free or overhang-free languages has the same property.

The following proposition makes a connection between the notions of
6-sticky-free and f-compliant languages. (If L C X is a language then L,,
denotes the set of all its proper and nonempty prefixes and L the set of all
its proper and nonempty suffixes.)

Proposition 1. For every language L C X and for every given morphic
or anti-morphic involution 6 : X+ — X T, the following are equivalent:

(1) L is 0-sticky-free;
(2) O(L) is O-sticky-free;
(3) L,N6(Ls) = 0 and L is both 0-p-compliant and 9-s-compliant.

Proof. (1)=(2)

Suppose 6(L) is not 6-sticky-free, i.e., there exist z,y € X* w € X
such that wz € (L) , yf(w) € 6(L) and zy # 1. If 6 is morphic,
then O(w)f(x) € L and 6(y)w € L. Since L is sticky-free, we have
1 = 0(z)0(y) = O(xy) and therefore zy = 1 — a contradiction. If 4 is
anti-morphic, then 6(z)0(w) € L and wé(y) € L. Again, since L is sticky-
free, 1 = 0(x)0(y) = 0(yx) and therefore yx = 1 —a contradiction. Hence
6(L) must be §-sticky-free.

2)=03)

Suppose that L, N 0(Ls) # (. Let u be an element of L, N 6(Ly).
u € L, implies that uz € L for some € X . The fact that u € 6(L;)
implies that 6(u) € Lg which, in turn, implies that yf(u) € L for some
y € XT.If 0 is morphic, then (u)f(z) € 0(L) and O(y)u € 6(L). Since
O(L) is O-sticky-free we have 1 = 0(x)0(y) = 6(zry) and so zy = 1 —
a contradiction. If € is anti-morphic, we have 6(x)0(u) € (L) and also

128 L. Kari et al.

uf(y) € O(L).Hence 1 = 0(y)0(x) = 0(zry) and xy = 1 — a contradiction.
Hence L, N 6(Ls) = 0. To show that L is §-p-compliant, suppose that
uz € Land §(u) € L withu € X . Then if § is morphic, 6(u)d(x) € 6(L)
and u € 6(L). Because 0(L) is sticky-free, (z) = 1, and hence = = 1. If
6 is anti-morphic, then 6(x)6(u) € (L) and u € §(L) imply x = 1 again.
Hence L is 6-p-compliant and #-s-compliance can be similarly shown.
(3)=(1) Suppose that L is not §-sticky-free. Then there exist wx &€
Liwe XT,y0(w) € Lyz,y € X* withzy # 1. If x # 1,y # 1, then
w € Ly, 0(w) € Lswhichimpliesw € 6(L,), and therefore w € L,N§(L)
— a contradiction. If x # 1 and y = 1, then L is not §-s-compliant — a
contradiction. Conversely, x = 1,y # 1 imply L is not §-p-compliant — a
contradiction. O

The following proposition shows a connection between the 6-sticky-free,
f-compliant, #-overhang-free and 0-free languages.

Proposition 2. Let X be an alphabet, 0 an involution, and L,) # L C X+
be a language. In case 0 is morphic, then if L is 0-compliant and 0-sticky-
free then L is O-free. In case 6 is anti-morphic, then if L is 0-compliant and
either 0-3'-overhang-free or 6-5’-overhang-free then L is O-free.

Proof. Suppose L is not §-free, i.e., LN XTO(L) X+ # (). Then there exist
u,v,w € Land x,y € X such that uv = z6(w)y.

Consider the case when 6(w) is a subword of u. Let u = ujugus € L
such that (w) = ug. Observe that ujusg # 1 since z € X+. Moreover,
since L is f-compliant, #(L) is also f-compliant, [18].

If 6 is morphic, then 0(u) = 6(u1)0(u2)f(us) € O(L) and ug € (L)
imply 6(u1)6(usg) = 1 by the f-compliance of §(L). Hence O(ujus) = 1
and so ujug = 1 — a contradiction.

If 4 is anti-morphic, then 0(u) = 6(u3)0(uz)0(u1) € 6(L), ug € (L)
imply 6(us3)f(u1) = 1, by the -compliance of 6(L). Hence 6(ujug) = 1
and so ujug = 1 — a contradiction.

If 6(w) is a subword of v, we can reason similarly to the above case to
get a contradiction.

Otherwise, we have v = zug,v = vy and 6(w) = ugv; for some
Uu2,v1 € Xt

If 6 is morphic, then w = §(ugv1) = O(u2)f(v1) € L, vy € L imply
O(uz)y = 1, since L is O-sticky-free. But we have y € X, ie.y # 1 —a
contradiction.

If 0 is anti-morphic and L is #-5’-overhang-free then w = 6(uqvy) =
0(v1)0(uz) € L, xug € L imply 6(v1)z = 1. If L is 6-3'-overhang-free
then we use the fact that v;y € L implies 6(u2)y = 1. Both cases contradict
the factthat z,y € X *,ie., 2 # 1,y # 1. 0

Sticky-free and overhang-free DNA languages 129

In the remainder of this section we study the problem of when, given two
languages L and Lo with property P, their catenation also has property P.
[18] studied conditions under which the catenation of #-compliant languages
is also #-compliant and [14] found conditions under which the catenation
of f-free languages is still f-free. Here we are considering situations where
the properties of #-sticky-freeness and f-overhang-freeness are preserved
under catenation.

Note first that the catenation of two sticky-free languages is not always
sticky-free.

Example 5. Take Y = {a,b,c}, L1 = {a™b"| n > 0}, Ly = {b"c"| n >
0}, and ¢ the morphic involution on Y defined as t(a) = ¢, t(c) = a,
t(b) = b. The language L; is t-sticky-free. Indeed, any word wz € L
starts with w = a’®/, i > 0, j > 0. This implies ¢(w) = ¢'b/ which cannot
be a suffix of any word in L;. Also Ly is t-sticky-free as wx € Lo implies
w = bicd,i > 0,j > 0, therefore t(w) = b'a’/ which cannot be a suffix of
any word in L.

However, L1 Ly = {a"b"*PcP| n, p > 0} is not t-sticky-free. Indeed, we
can find words w = a*, x = b"tJ¢J, y = a¥b*+ such that wa = a’b'ticl €
L1 Ly and also yt(w) = a"b**+c' € Ly L.

Example 6. Let Y = {a,b,c} and let e be the identity function on Y
extended to an anti-morphic involution. Let L; = {a"b"c"| n > 0}
and Ly = {c"b"a" n > 0}. The language L; is e-sticky-free as the
images through e of nontrivial prefixes of words L; are not suffixes of
words in L;. The same argument shows that Ls is e-sticky-free. However,
LiLy = {a"b"c"t™b™a™| n,m > 0} is not e-sticky-free as we have
images of prefixes of L Lo which are at the same time suffixes of L L.

The following proposition gives a sufficient condition for the catenation
of two languages to be 6-sticky-free.

Lemma 1. Let 0 be an anti-morphic involution and let L be a 0-sticky-
free language. If two words wy € L and we € 6(L) have a common and
nonempty prefix then wi; = wo.

Proof. Suppose wy; = px; and wy = pxa, for some words x1, xo, p with p
nonempty. Then 6(z2)6(p) € L, which implies that 1 = x2 = 1 using the
fact that L is 6-sticky-free. Hence, w1 = ws. O

Proposition 3. Let X be a finite alphabet, let 0 : X* — X* be an in-
volution, and let L1, Lo be nonempty subsets of X such that L1 U Lo is
0-sticky-free and L1 N O(Lg) = 0. Then the following statements hold true.

130 L. Kari et al.

1 LqiLo is O-sticky-free.

2 If Ly is O-nonoverlapping then L1 U Ly Ly is 0-nonoverlapping and 6-
sticky-free.

3 If Ly is 0-nonoverlapping then Lo U L1 Ly is 0-nonoverlapping and 6-
sticky-free.

4 If Ly and Ly are 0-nonoverlapping then L1 U Lo U L1 Lo is 0-nonover-
lapping and 0-sticky-free.

Proof. For the first part, assume that L Lo is not #-sticky-free. Then there
are two words of the form wz and y6(w) in L; Ly such that w is nonempty
and not both z and y are empty. We show that this assumption leads to
a contradiction. Consider words u1,v1 in Lq and wus,vo in Lo such that
wz = ujug and yb(w) = vyve.

First consider the case where 6 is anti-morphic. As wx = wujus and
wb(y) = O(vz)f(v1), the words u; and 6(v2) have acommon and nonempty
prefix. By Lemma 1, this implies that u; = 6(v3), which contradicts L; N
8(Ls) = 0.

Now consider the case where 6 is morphic. We distinguish four subcases.

@ [w] < [ur] and [0(w)] < [os].
(b) |w| < |u|and |O(w)] > |val.
(©) |w| > |u1| and [0(w)] < |val.
(d) |w| > |ui| and |(w)| > |val.

Subcase (a) implies that both and y are nonempty, and ©; = wz; and
vy = y20(w), for some words x; and 9. This leads to a contradiction using
the fact that Ly U Lo is f-sticky-free and Ly N #(Ly) = (). Subcase (b)
implies that = is nonempty and 6(w) = sjvg, u1 = wxy and v; = ysy,
where s7 is a nonempty suffix of v; and x; is a proper prefix of x. Then we
have that u; = 6(s1)0(ve)x1 and v1 = y#(A(s1)), which contradicts the
fact that L1 U Lo is 6-sticky-free. Subcase (c) also leads to a contradiction
using the arguments of subcase (b).

Finally, subcase (d) implies that w = u1p2, O(w) = s1v2, us = pox
and v; = ys1, where po is a nonempty prefix of ug and s; is a nonempty
suffix of v1. Then we have that u;ps = 6(s1)8(v2). If |8(v2)| < |p2| then
p2 = 20(v2) and 6(s1) = uyz, for some proper and nonempty prefix z of
p2. Moreover, it follows that v1 = yf(u1)0(z) and us = z6(vs)x, which
contradicts the fact that L; U Ly is 6-sticky-free. If |6(v2)| > [p2| then
0(vy) = zpo and uy = 6(s1)z, for some proper suffix z of ui. As ug = pox
and v; = y#(0(s1)), we have that z = z = 1 and y = z = 1, which
contradicts the assumption that z and y are nonempty.

For the second part it is sufficient to show that the following claim is
false: there are words z,y € X*, zy € X', and w € X such that
wzx,yf(w) € L1 U Ly Ly. We distinguish four cases:

Sticky-free and overhang-free DNA languages 131

(a) wz € Ly and yf(w) € L.

(b) wz € Ly and yO(w) € Ly Lo.
(¢) wx € L1Ly and yO(w) € L.
(d) wx € L1Ls and ye(w) € L1Lo.

Case (a) is not possible as L is #-nonoverlapping and #-sticky-free. In case
(b), there are words wy € L; and wy € Ly such that yf(w) = wjws. Then,
aswzwsy € L1Lyand Ly Ly is f-sticky-free, we have y = 2wy = 1 which is
impossible. In case (c), we have wz = wjws for some words wy € Ly and
wg € Lo. If |w| < |wy| then there is 1 € X* such that wz; = wy € L.
This is impossible, however, as L; is #-nonoverlapping and #-sticky-free.
Now if |w| > |w;| then w = w1, we = sx, and yf(w;s) € Ly, for some
s € Xt.If is anti-morphic then y6(s)#(w1) € Ly which is impossible as
L, is #-nonoverlapping and 6-sticky-free. If § is morphic then y6 (w1)0(s) €
L1 which is impossible as sx € Ly and L1 U Ly is f-sticky-free. In case (d),
we have x = y = 1 using the first part of the proposition. Then, w = wjws
and 6(w) = wyug for some words wy,u; € L; and wo,us € Lo. If 0 is
anti-morphic then w = 0(u2)6(u;) which is impossible as L; Ls is 6-sticky-
free. Now if € is morphic then wyws = 6(u1)6(ug). But then, using a case
distinction on the relation between |w; | and |0(u1)|, one can verify that the
assumption of L being #-nonoverlapping and 6-sticky-free is contradicted.

The third part of the proposition can be proved using similar arguments.

Finally, the fourth part follows from the previous ones. ad

The following corollary shows that, if we have at our disposal a 6-
nonoverlapping and 6-sticky-free language K, then the language obtained
by taking arbitrary catenations of words from K remains f#-nonoverlapping
and #-sticky-free. The result is relevant, as catenation of codewords is one of
the most common ways of combining information encoded on DNA strands.

Corollary 1. Let 0 be an involution of X* andlet K C X be a language. If
K is 0-nonoverlapping and 0-sticky-free then K also is 0-nonoverlapping
and 0-sticky-free.

Proof. Assume that K is 6-nonoverlapping and 6-sticky free. We use induc-
tion on 7 to show that [J_; K" is f-nonoverlapping and 6-sticky-free. The
case of n = 1 is trivial. Now suppose the claim holds for [J{" ; K*. Then,
K U (U, KY) is §-sticky-free and, as K N (U, K%) = (), one has that
KUK (U™, K")is f-sticky-free. Hence, | /! K is f-nonoverlapping and
@-sticky-free and the induction is complete. a

Note that Proposition 3, (1), gives a sufficient condition (in two parts)
for the catenation of two languages Lj Ly to be §-sticky-free for a given
involution 6. To see whether the conditions are also necessary, we ana-
lyze situations where the catenation of two languages is not -free and see
whether this coincides with a violation of condition (1) in Proposition 3.

132 L. Kari et al.

One such example is that of the languages in Example 5. In that case, the
languages satisfy condition L; N¢(L2) =) but fail to satisfy the condition
L1 U Ly being t-sticky-free. Indeed, L1 U Ly = {a™b™, 0™ ™| n,m > 0}
is not ¢-sticky-free.

The languages in Example 6 fail to satisfy both conditions. Indeed, L; N
e(Ly) = Ly # 0 and Ly U Ly = {a"b™c", ™b™a™| n,m > 0} which is
not e-sticky-free.

Consider a third example, L1 = {a}, Lo = {b} over X = {a, b}, and
f(a) = b, f(b) = aextended to an anti-morphic involution. These languages
satisfy the condition L; U Ly being f-sticky-free but L1 N f(La) = {a} # 0.
The catenation L1 Ly = {ab} is not f-sticky-free as we have ab = af(a) €
Ly L.

The above examples all depict situations in which the languages involved
are 0-sticky-free and where failure to satisfy one or both parts of condition (1)
in Proposition 3 coincides with L1 Lo being not §-sticky-free. This suggests
that, in case both languages are 0-sticky-free, condition (1) in Proposition
3 for their catenation to be #-sticky- free is also necessary. The following
result holds.

Proposition 4. Let 0 be an involution of X* and let L1, Ly C X be two
nonempty 0-sticky-free languages. Then L1Lo and Lol are 0-sticky-free
iff L1 U Lg is O-sticky-free and L1 N 6(La) =).

Proof. One of the implications follows from 1. of Proposition 3. For the
converse implication, assume that ¢ is a morphic or anti-morphic involution
of X*and L1, Ly are two 6-sticky-free languages such that L1 N6 (Ly) # (0.
Letw € L1 N6(Lz). Then there exists u € Lo such that §(u) = w, w € L;.
Then wu € L1Ls and wu = wh(w). We found a word that is prefix of a
word in Lj Ly and its image under 6 is a suffix of a word in L L9, which
means L Lo is not 6-sticky-free.

Assume now that Ly U Lo is not §-sticky-free. As L1, Lo are 8-sticky-
free, the only possibilities are that there exist wx € L; with yf(w) € Lg or
wzx € Lo with yf(w) € L. Consequently, wayf(w) is in Ly Lo or Lol
contradicting the fact that Ly Lo and Lo L are 0-sticky-free. O

Proposition 4 does not hold if we replace “L1 Lo and Lo L1 are 6-sticky-
free” by “L1 Lo is 0-sticky-free”, as shown by the following example. Con-
sider the DNA alphabet, the DNA involution 7 and the languages L; =
{ACTG,GGAA}, Ly = {TTCA,CAGG}. Then we have that L Ly is
T-sticky-free, but L; U Lo is not 7-sticky-free. Note that in this case Lo L
fails to be 7-sticky-free.

The rest of this section will address the question of when the catenation
of two languages is #-overhang-free for some involution # of X *. Recall that
DNA strands are “directed” molecules with two distinct ends called the 3’

Sticky-free and overhang-free DNA languages 133

end and 5’ end. Because of this polarity distinction, the overhang structure
(see Fig.2) has two cases. In one case, it is the 3’ ends of the two strands
that hang over, in the other case it is the 5° ends. We still consider general
results about morphic and anti-morphic involutions. However, because the
3’-overhang and 5’-overhang structures are similar, there is some symmetry
in the four propositions that follow.

In case the involution € is morphic, a sufficient condition for L Lo to
be 0-3'-overhang-free is very weak. It namely suffices for L, to be 6-3'-
overhang-free in order for L Lo to have the same property, regardless of the
properties of Lo.

Proposition 5. Let L1, Lo be nonempty subsets of X+ and let 0 be a mor-
phic involution. If Ly is 0-nonoverlapping and 0-3'-overhang-free, then L1U
L1 Ly and, therefore, L1 Lo are 6-3'-overhang-free and 0-nonoverlapping.

Proof. First, suppose it is not the case that L Lo is 6-3'-overhang-free and
@-nonoverlapping. Then there are u,v € LjLy such that v = wz and
v = 0(w)y for some w € X and z,y € X*.

For wx the choices are:

(1) w = wywz; w1 € Ly, wax € Loyjwy, wp € X T,
2) we Li,x € Lo,
(B) x = x129,wx1 € L1, 29 € Lo with 21,29 € X .

For 6(w)y the choices are:

(@) w=wuw";0(w) e L,0(w")y € Ly withw',w" € XT.
(b) H(w) € L1,y € Lo.
(©) y=11y2;0(w)y1 € L1,y2 € Ly withyy,y2 € X

Cases (1b), (1¢), (2a), (2¢), and (3) cannot occur because they all contradict
L1 being #-3'-overhang-free. Case (2b) cannot occur because it would imply
that w, 8(w) € L1, but we have that L; is #-nonoverlapping.

The remaining case is (1a). We have w = wiwe = w'w”, wy,0(w') €
Ly, waz, (w")y € Lo. If |wy| = |w'|, then wy = w', 0(w') = O(w1) and
sobothwy, #(w) € Ly —acontradiction. If |wy | > |w'|, thenw; = w'r, for
some nonempty 7. We have wy = w'r € L1, 6(w’) € Ly. This contradicticts
the hypothesis that Ly is 6-3'-overhang-free. If |w; | < |w'|, we get the same
contradiction.

Now we show that L; U L Lo is 6-3'-overhang-free and 6-nonoverlap-
ping by contradiction. Suppose wx € L1ULjLsand @(w)y € L1ULq Lo for
some w € X and z,y € X*. By the above, it is sufficient to consider the
following two cases: (a) wx € Ly and §(w)y € Ly Lo, and (b) O(w)y € Ly
and wx € LiLo.

In the case (a), there are words u; € Lj and ug € Lo such that f(w)y =
ujug. Then, using a case distinction on the relation between |6(w)| and

134 L. Kari et al.

|u1|, one can verify that the assumption of L; being #-nonoverlapping and
0-3'-overhang-free is contradicted. For case (b), one can work analogously.
O

The above proposition can be used to construct large classes of languages
which are 6-3'-overhang-free and 6-nonoverlapping. For example, if the
alphabetis A = {A,C,G, T} and 6 is such that (A) = T'and §(C) = G,
then the language oL is #-nonoverlapping and 6-3’-overhang-free for every
symbol o € A and for every nonempty language L. C AT,

The following corollary shows that, if § is a morphic involution, given
a 0-3'-overhang-free language L, the language obtained by taking arbitrary
catenations of words from L is also 6-3'-overhang-free.

Corollary 2. Let L be a nonempty subset of X and let 6 be a morphic
involution. If L is O-nonoverlapping and 0-3'-overhang-free, then also L™
is O-nonoverlapping and 0-3'-overhang-free.

Proof. By Proposition 5, LU LL™ is §-nonoverlapping and #-3'-overhang-
free. Then, the claim follows by the fact that LT = LU LL™. 0

Proposition 6. Let L1, Lo be nonempty subsets of X+ and let § be a mor-
phic involution. If Lo is 0-nonoverlapping and 0-5’overhang-free, then L1 Lo
is 0-5’overhang-free.

Proof. Similar to that of the previous proposition. ad

Corollary 3. Let K be a nonempty subset of X+ and let 0 be a morphic
involution. If K is O-nonoverlapping and 0-5’overhang-free, then also K+
is 8-nonoverlapping and 0-5’overhang-free.

Proof. Similar to that of the previous corollary. ad

In case the involution we deal with is anti-morphic, as is the case of the
DNA involution, there are notably more requirements on languages in order
to have their concatenation being overhang-free.

Proposition 7. Let L1, Ly be nonempty subsets of X and let 6 be an
anti-morphic involution. If Ly is 0-compliant, 0-overhang-free, 0-nonover-
lapping, Lo is 0-3'-overhang-free, and L1 U Ly is 6-p-compliant, then Ly Lo
is 0-3'-overhang-free.

Proof. Suppose Lj Lo is not 6-3'-overhang-free. Then there exist u,v €
L1 Ly such that u = wx,v = (w)y,w € X so that vy # 1.
For wx the choices are:

(1) w=wiwy;wy € Ly, wox € Loy;wy,wy € X+
2) we L,z € Ly

Sticky-free and overhang-free DNA languages 135

B) x = z1x9,wx1 € L1, 79 € Ly with 21,29 € X
For 6(w)y the choices are:

@ y=wy1y2;0(w)ys € L1,y2 € Lo withyy,yo € X
(b) O(w) € L1,y € Lo
©) w=wuw";0(w") e L,0(w)y € Ly withw',w" € X*

The cases (1ab), (2ac), (3bc) cannot occur because they contradict the hy-
pothesis that L is #-compliant and #-nonoverlapping. Case (3a) cannot
occur because L is #-overhang-free. The case (2b) cannot occur since it
contradicts L1 being §-nonoverlapping. The remaining case is (1c), where
w = wiwy = w'w”, wy € L1, wex € Ly and O(w") € Lq,0(w)y € Lo.

If |wq1| = |w'], then w1 = w’ and we = w”. We have xy # 1. Hence
either v # lory # 1. If y # 1, then O(w')y,w’ € Li U Ly gives a
contradiction, since L1 U Lo is f-p-compliant. If # 1, then wox, 6(w3) €
L1 U Ly also gives a contradiction.

If |wy| > |w’|, then there exists r # 1 such that w; = w'r and w” =
rws. Hence w1 = w'r € Ly, (w") = O(rwe) = O(w2)0(r) € Ly. This
contradicts L being §-overhang-free.

If |wy| < |w'|, then there exists r # 1 suchthatw’ = wyrand we = rw”.
Hence 0(w')y = 0(wir)y = 0(r)0(w1)y € Lo, wox = rw”x € Lg. This
contradicts Lo being 6-3'-overhang-free. a

Proposition 8. Let Ly, Ly be nonempty languages in X and let 0 be an
anti-morphic involution. If Ly is 6-compliant, 0-overhang-free, LoN0(Ly) =
(0, Ly is -5 overhang-free, and L1 U Lo is 0-s-compliant, then Ly Lo is 6-
5’overhang-free.

Proof. Similar to that of the above proposition. ad

Let L1 and Lo be two DNA languages over A and consider 7, the DNA
involution. The following result gives sufficient conditions for the concate-
nation of L; and Lo to be overhang-free.

Corollary 4. Let Ly C AT and Ly C A™ be two nonoverlapping, over-
hang-free, DNA compliant languages with respect to T, the DNA involution.
If L1 U Lo is both p- and s-compliant, then L1 Lo is overhang-free.

4 Languages invariant under bio-operations

Until now we have considered static properties of languages, i.e. conditions
ensuring that the initial DNA language encoding the input to a problem
has good encoding properties. A necessary next step is to determine how
to ensure that the computational steps performed on the language of initial

136 L. Kari et al.

encodings do not alter these properties. In this section we investigate several
bio-operations a